GABA(A) receptor channel pharmacology.
نویسنده
چکیده
GABA(A) receptor channels are ubiquitous in the mammalian central nervous system mediating fast inhibitory neurotransmission by becoming permeant to chloride ions in response to GABA. The emphasis of this review is on the rich chemical diversity of ligands that influence GABA(A) receptor function. Such diversity provides many avenues for the design and development of new chemical entities acting on GABA(A) receptors. There is also a significant diversity of GABA(A) receptor subtypes composed of different protein subunits. The discovery of subtype specific agents is a major challenge in the continuing development of GABA(A) receptor pharmacology. Leads for the discovery of new chemical entities that influence GABA(A) receptors come from using recombinant GABA(A) receptors of known subunit composition as has been elegantly demonstrated by the refining of benzodiazepine actions with alpha1 subunit preferring agents showing sedative properties but not anxiolytic properties. The most recent advances in the therapeutic use of agents acting on GABA(A) receptors concern the promotion of sound sleep. Many herbal medicines are used to promote sleep and many of their active ingredients include flavonoids and terpenoids known to modulate GABA(A) receptor function.
منابع مشابه
Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides.
Ionotropic GABA receptors are abundant in both vertebrate and invertebrate nervous systems, where they mediate rapid, mostly inhibitory synaptic transmission. A GABA-gated chloride channel subunit from Drosophila melanogaster [Resistant to Dieldrin (RDL)] has been cloned, functionally expressed, and found to exhibit many aspects of the pharmacology of native, bicuculline-insensitive insect GABA...
متن کاملInvolvement of GABAergic System in Increased Pentylenetetrazole-Induced Seizure Threshold in Cholestatic Mice
Gamma-aminobutyric acid (GABA) is an important inhibitory transmitter in central nervous system and is involved in pathophysiology of epilepsy. Pentylenete-trazole (PTZ), a convulsant agent, partly acts via anion channel of GABAA receptor. Ivermectin, an antiparasitic agent and a GABAA agonist, has anticonvulsant effect in animal seizure models. Cholestasis increases ...
متن کاملAnalgesic effect of intracerebroventricular injection of GABA receptor agents and the role of opioid system
In the present study, the effect of GABA (γ-aminobutyric acid) receptor agonists and antagonists on morphine-induced antinociception was investigated in formalin test in rats. Intraperitoneal (i.p.) injection of different doses of morphine (1, 3, 6 and 9 mg/kg) and intracerebroventricular (i.c.v.) injection of different doses of muscimol (0.5, 1 and 2 g/rat) or baclofen (0.25, 0.5 and 1 g/rat) ...
متن کاملCloned GABA receptors are maintained in a stable cell line: allosteric and channel properties.
The cloned cDNAs encoding the alpha 1 and beta 1 subunits of the bovine brain GABA(A) receptor have been co-transfected, using a dexamethasone-inducible promoter, into cultured hamster ovary cells, with selection to form a stable cell line. The use, alternatively, of a much stronger constitutive promoter led to cell death consequent upon high receptor density. After induction, the cells contain...
متن کاملInternational Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update.
In this review we attempt to summarize experimental evidence on the existence of defined native GABA(A) receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABA(A) receptors (Pharmacol Rev 50:291-313, 1998) approved by the Nomenclature Committee of the International Union of ...
متن کاملInverse effects on gating and modulation caused by a mutation in the M2-M3 Linker of the GABA(A) receptor gamma subunit.
M2-M3 linkers are receptor subunit domains known to be critical for the normal function of cysteine-loop ligand-gated ion channels. Previous studies of alpha and beta subunits of type "A" GABA receptors suggest that these linkers couple extracellular elements involved in GABA binding to the transmembrane segments that control the opening of the ion channel. To study the importance of the gamma ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current pharmaceutical design
دوره 11 15 شماره
صفحات -
تاریخ انتشار 2005